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We propose a routing strategy to improve the transportation efficiency on complex networks. Instead of
using the routing strategy for shortest path, we give a generalized routing algorithm to find the so-called
efficient path, which considers the possible congestion in the nodes along actual paths. Since the nodes with the
largest degree are very susceptible to traffic congestion, an effective way to improve traffic and control
congestion, as our strategy, can be redistributing traffic load in central nodes to other noncentral nodes.
Simulation results indicate that the network capability in processing traffic is improved more than 10 times by
optimizing the efficient path, which is in good agreement with the analysis.
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Since the seminal work on scale-free networks by
Barabási and Albert �BA model� �1� and on the small-world
phenomenon by Watts and Strogatz �2�, the structure and
dynamics of complex networks have recently attracted a tre-
mendous amount of interest and attention from the physics
community �see the review papers �3–5� and references
therein�. The increasing importance of large communication
networks such as the Internet �6�, upon which our society
survives, calls for the need for high efficiency in handling
and delivering information. In this light, to find optimal strat-
egies for traffic routing is one of the important issues we
have to address. There have been many previous studies to
understand and control traffic congestion on networks, with a
basic assumption that the network has a homogeneous struc-
ture �7–11�. However, many real networks display both
scale-free and small-world features, and thus it is of great
interest to study the effect of network topology on traffic
flow and the effect of traffic on network evolution. Guimerá
et al. present a formalism that can cope simultaneously with
the searching and traffic dynamics in parallel transportation
systems �12�. This formalism can be used to optimize net-
work structure under a local search algorithm, while to ob-
tain the formalism one should know the global information
of the whole networks. Holme and Kim provide an in-depth
analysis on the vertex/edge overload cascading breakdowns
based on evolving networks, and suggest a method to avoid
such avalanches �13,14�. By using a global and dynamical
searching algorithm aimed at the shortest paths, Zhao et al.
provide the theoretical estimates of the communication ca-
pacity �15�. Since global information is usually unavailable
in large-scale networks, Tadić et al. investigate the traffic
dynamics on the WWW network model �16� based on local
knowledge, providing insight into the relationship of global
statistical properties and microscopic density fluctuations
�17–19�. The routing strategies for the Internet �20� and dis-
ordered networks �21� are also studied. Another interesting

issue is the interplay of traffic dynamics and network struc-
tures, which suggests a new scenario of network evolution-
ary �22–26�.

In this context, for simplicity, we treat all the nodes as
both hosts and routers �12,27�. In communication networks,
routers deliver data packets by ensuring that all converge to a
best estimate of the path leading to each destination address.
In other words, the routing process takes place according to
the criterion of the shortest available path from a given
source to its destination. When the network size N is not too
large, it is possible to calculate all the shortest paths between
any nodes, and thus the traffic system can use a fixed routing
table to process information. As for any pair of source and
destination, there may be several shortest paths between
them. We randomly choose one of them and put it into the
fixed routing table, which is followed by all the information
packets. Though it becomes impractical in huge communica-
tion systems, the fixed routing algorithm is widely used in
medium-sized or small systems �28,29�. This is because the
fixed routing method has obvious advantages in economical
and technical costs, compared with the dynamical routing
algorithm and information feedback mechanism. The model
is described as follows: at each time step, there are R packets
generated in the system, with randomly chosen sources and
destinations. It is assumed that all the routers have the same
capabilities in delivering and handling information packets,
that is, at each time step all the nodes can deliver at most C
packets one step toward their destinations according to the
fixed routing table. We set C=1 for simplicity. A packet,
upon reaching its destination, is removed from the system.
We are most interested in the critical value Rc �as measured
by the number of packets created within the network per unit
time� where a phase transition takes place from free flow to
congested traffic. This critical value can best reflect the
maximum capability of a system handling its traffic. In par-
ticular, for R�Rc, the numbers of created and delivered
packets are balanced, leading to a steady free traffic flow. For
R�Rc, traffic congestion occurs as the number of accumu-
lated packets increases with time, simply because the capaci-
ties of the nodes for delivering packets are limited. We use*Electronic address: zhutou@ustc.edu
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the order parameter to characterize the phase transition,

H�R� = lim
t→�

C

R

��W�
�t

, �1�

where �W=W�t+�t�−W�t�, with �¯� indicating average
over time windows of width �t, and W�t� is the total number
of packets in the network at time t. Figure 1 shows the order
parameter H versus R for �a� the two-dimensional lattice
with periodical boundary condition and �b� the scale-free BA
network with average degree �k�=4 �1�, given all the packets
following their shortest paths. The critical point Rc in the
lattice is much larger than that in the scale-free network,
which can be simply explained by their different between-
ness centralities �BC� distributions �30–33�. The BC of a
node v is defined as

g�v� = �
s�t

�st�v�
�st

, �2�

where �st is the number of shortest paths going from s to t
and �st�v� is the number of shortest paths going from s to t
and passing through v. Moreover, BC gives in transport net-
works an estimate of the traffic handled by the vertices, as-
suming that the number of shortest paths is a zeroth-order
approximation to the frequency of use of a given node. It is
generally useful to represent the average BC for vertices of
the same degree,

g�k� =
1

Nk
�

v,kv=k

g�v� , �3�

where Nk denotes the number of nodes with degree k. For
most networks, g�k� is strongly correlated with k. In general,
the larger the degree, the larger the centrality. For scale-free
networks it has been shown that the centrality approximately
scales as g�k��k�. In comparison, the BC in the lattice will
behave as a homogeneous distribution. Noticeably, in scale-
free networks, traffic congestion generally occurs at nodes
with the largest degree �or BC�, and immediately spreads
over all the nodes. When all the packets follow their shortest
paths, it will easily lead to the overload of the heavily linked
router, which is precisely the cause of traffic congestion. To
alleviate the congestion, a feasible and effective way is to
bypass such high-degree nodes in the traffic-routing design.
This leads us to question the commonly used shortest-path
routing mechanism.

Actually, the path with the shortest length is not necessar-
ily the quickest way, considering the presence of possible
traffic congestion and waiting time along the shortest path
�by “shortest” we mean the path with the smallest number of
links�. Obviously, nodes with larger connections are more
likely to bear traffic congestion, thus a packet will by aver-
age spend more waiting time to pass through a high-BC
node. All too often, bypassing those high-BC nodes, a packet
may reach its destination quicker than taking the shortest
path. In order to find the optimal routing strategy, we define
the “efficient path.” For any path between nodes i and j as
P�i→ j� : = i	x0 ,x1 , . . . ,xn−1 ,xn	 j, denote

L„P�i → j�:�… = �
i=0

n−1

k�xi��. �4�

The efficient path between i and j is corresponding to the
route that makes the sum L(P�i→ j� :�) minimum. Obvi-
ously, Lmin��=0� recovers the traditionally shortest path
length. We expect that the system behaves better under the
routing rule with ��0 than it does traditionally, and we aim
to find the optimal � in this paper. In the following, the fixed
routing table is designed on the basis of efficient path. If
there are several efficient paths between two nodes, one is
chosen at random. We are now interested in determining the
phase-transition point Rc under various �, in order to address
which kind of routing strategy is more flexible to traffic con-
gestion, and therefore find the optimal �.

Aiming to estimate the value of Rc for different �, we
define the efficient betweenness centralities �EBC� of a node
� as

g���� = �
s�t

�st
����
�st

� , �5�

where �st
� is the number of efficient paths for a given � going

from s to t and �st
��v� is the number of efficient paths for a

given � going from s to t and passing through v. It is well
known that for low values of R the system reaches a steady
state in which W�t� fluctuates around a finite value. As R

FIG. 2. �Color online�. The critical Rc vs � for scale-free net-
works with size N=1225. Both Simulation and analysis indicate
that the maximum of Rc corresponds to �
1.0. The data shown
here are the average over 10 independent runs.

FIG. 1. The order parameter H vs R for two-dimensional lattice
�a� and BA networks �b� with the same size N=1225. The routing
algorithm at the shortest path yields Rlattice
65 and RBA
4.0.
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increases, the system undergoes a continuous phase transi-
tion to a congested phase. Below the critical value Rc, there
is no accumulation at any node in the network and the num-
ber of packets that arrive at node u is, on average,
Rgu /N�N−1�. Therefore, a particular node will collapse
when Rgu /N�N−1��Cu, where gu is the betweenness and
Cu is the transferring capacity of node u. Considering the
transferring capacity of each node is fixed to 1 in this paper
and congestion occurs at the node with the largest between-
ness, Rc can be estimated as �12,15�

Rc = N�N − 1�/gmax, �6�

where gmax is the largest BC of the network. Similarly, for
different �, we can estimate Rc��� as

Rc��� = N�N − 1�/gmax
� , �7�

where gmax
� is the largest EBC for a given �.

In Fig. 2, we report the simulation results for the critical
value Rc as a function of � on BA networks, which is in good
agreement with the analysis. As one can see, Rc first in-
creases with � and then decreases, with the maximum of Rc
corresponding to �
1.0. In comparison with the shortest
path routing case �i.e., �=0�, the capability of the network in
freely handling information is greatly improved, from Rc

4.0 when �=0 to Rc
45 when �=1.0, more than ten

times. This result suggests the effectiveness of the routing
strategy by our efficient path length. Figure 3 shows the op-
timized behavior of our efficient path routing in load distri-
bution when congestion just occurs �b�, in comparison with
that of the shortest path routing mechanism �a�. Clearly, the
heavy load on central nodes �with highest connectivity� is
strongly redistributed to those nodes with a lower degree by
using an efficient path routing table. We also report in Fig.
4�a� the average actual path length Lave versus the network
size N under various values of �. As one can see, although
Lave increases with �, the small-world property Lave� ln N is
still maintained. The system capability in processing infor-
mation is considerably enhanced at the cost of increasing the
average routing path length. Such a sacrifice may be worth-
while when a system requires large Rc. Moreover, we inves-
tigate the average transporting time �T� of packets. The re-
sults in Figs. 4�b� and 4�c� show that �T� and H indicate the
same critical value Rc.

To realize the routing strategy we have studied, each
router must have the complete knowledge of the network
topology, which is often difficult for large-scale systems.
Anyway, it is possible to divide one large system into several
autonomous subsystems in which every router has its local
topological knowledge. Thus, the hierarchical structure of
the network will make possible the implementation of our
routing strategy. This paper has mainly discussed how to
effectively design a routing algorithm when the capabilities
of processing information are the same for all the nodes. To
account for the network topology, one can assume that the
capabilities for processing information are different for dif-
ferent nodes, depending on the numbers of links or the num-
ber of the shortest paths passing through them �15�. In addi-
tion, the shortest path is shortest just in a topological sense;

FIG. 3. The load distribution when congestion occurs for a BA
network with size N=1225. �a� The case of �=0 where Rc=4.0 and
we set R=10. �b� The case of �=1 where Rc=45 and we set R
=60.

FIG. 4. �Color online� �a� The average actual path length Lav vs
the network size N under various values of �, by using the efficient
path routing. �b� and �c� show �T� and NH vs R for �=0.0 and 1.0,
respectively, where N=1225.
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in practice, it is not necessarily the best. As for a single
packet, its best routing as we have argued is not absolutely
the shortest path. From the systematic view, the total infor-
mation load that a communication network can freely handle
without congestion depends on all the packets reaching their
destinations in a systematically optimal time. We use Rc to
denote the upper limit of the total information load that a
communication system can handle without congestion. This
parameter reflects the system capability in processing infor-
mation under a certain routing strategy. An effective way to
alleviate traffic congestion for scale-free networks is to make
the heavily linked nodes as powerful and efficient as possible
for processing information. This is further supported by ex-
amining the effect of enhancing the capabilities of these
nodes. Moreover, we have checked the efficient routing on
scale-free networks with 	=2.0 and 2.5 �obtained by the
extensional BA model �34,35��, where 	 is the exponent of
power-law distribution p�k�
 k−	. We obtained the same op-
timal value as �=1.0 on these different scale-free networks.
In average, the capability Rc increases 7.5 times and 9.3
times for the above two cases, respectively. In addition, some
models aiming at communication networks, such as the mod-
els of the World-Wide-Web�16� and the Internet �36,37�, are
closer to reality than BA networks. To investigate the present
traffic model and routing strategy for these network models
is significant in practice. This will be done in future works.

While our model is based on computer networks, we ex-
pect it to be relevant to other practical networks in general.
Our studies may be useful for designing communication pro-
tocols for complex networks, considering there appears no

increase in its algorithmic complexity. The optimized routing
strategy studied in this paper can be easily implemented in
practice.

Many previous works focus on the relationship between
the distribution of BC and the capability of communication
networks, with a latent assumption that the information pack-
ets go along the shortest paths from source to destination.
Therefore, the BC is always considered as a static topologi-
cal measure of networks. Here we argue that this quantity is
determined both by the routing algorithm and network topol-
ogy, thus one should pay more attention to the design of
routing strategies. We believe this work may enlighten read-
ers on this subject and be helpful for understanding the in-
trinsic mechanism of network traffic. Finally, it is worthwhile
to emphasize that we have found some evidence indicating
there may exist some common features between network
traffic and synchronization on a dynamical level, thus the
present method may also be useful for enhancing the net-
work synchronizability �38–42�.
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